

Overview of therapeutic approaches

Annemieke Aartsma-Rus June 19 2010

Duchenne muscular dystrophy

Cause: no functional dystrophin protein

Consequence: Duchenne

Overview

- What is function of dystrophin protein
- What happens when there is no dystrophin?
- How can therapeutic approaches prevent/delay this process?
 - Genetic approaches
 - Drugs

Genes and proteins

- Proteins building blocks of our body
- Genes contain blueprint for proteins
- Mistake in gene
 mistake in protein
- Genes have a volume switch
 - Only on in necessary tissue
- Dystrophin protein has function in muscle
- Mistake in dystrophin
 muscle problems

Muscles

- 30-40% of our body consists of muscle
- Muscles can grow bigger and smaller
- Muscles use lot of energy
- Only maintained when needed
- Muscles damaged after excessive exercise
- Muscles very efficient at repairing damage
 - → Bigger when needed

Dystrophin

- Dystrophin provides stability to muscle cells during exercise
- Link between skeleton inside muscle cell and connective tissue outside muscle cell
- Link lost: muscle cells damaged during exercise
- Repair system cannot keep up
- Loss of muscle mass and muscle function

Dystrophin

Duchenne: no functional dystrophin

No functional dystrophin

Annemieke Aartsma-Rus

Therapeutic approaches

- Gene therapy
- Cell therapy
- Genetic therapy
 - Exon skipping
 - Stop codon readthrough
- Drug therapy
 - Utrophin upregulation
 - Myostatin inhibition

Restore/compensate for dystrophin

More muscle mass

- Add functional gene to muscle cells patients
- Dystrophin protein made from new gene
- Applicable to ALL patients
- Genes located in nucleus cells
- How to get gene into (majority) nuclei of muscle cells?

Virus

- Small organism that injects genetic information into cells
- Use to deliver dystrophin gene
- Adapt
 - Remove virus genes (pathogenic)
 - Add new gene (dystrophin)

Which virus?

- Most viruses do not infect muscle tissue
 - Muscle cells do not divide often
 - Lot of connective tissue (filters out viruses)
- Exception: adeno-associated virus (AAV)
- Preference for muscle
- Not pathogenic in man

- Very small (20 nm, 0.00002 mm)
- Capacity: 4.500 DNA subunits
- Dystrophin gene: 2.200.000 DNA subunits
- Genetic code gene: 14.000 subunits
- Remove part from genetic code
- Only essential parts remain

- AAV microdystrophin tested in mdx mouse model
- Microdystrophin detected in muscle!
- Improved muscle function and quality!
- Tested in Duchenne dog model

- Immune problems (virus)
- AAV also induces immune problems in humans

Clinical trials

- Safety study in Duchenne patients
- 2006/7, USA: local injection biceps (Mendell,Samulski, Xiao Xiao)
- Immune response!
- Dystrophin in 2/6 patients (low levels)
- Prepare for bigger trial (whole muscle treatment)
- Chamberlain also preparing trial

Immune problem

- Other AAV subtypes may not be recognized by immune system
- Immune suppression
 - Only before and immediately after treatment?
- Use only DNA (Jon Wolff, France)

Cell therapy

- Isolate muscle stem cells from healthy donor
- Expand outside the body (culture in lab)
- Transplant into patients

Cell therapy

Problem

- Immune response (suppress)
- Muscle stem cells do not migrate from bloodstream into muscle
- Muscle stem cells do not migrate IN muscle
 (stevi eless to inication cita)

(stay close to injection site)

 Multiple injections (Tremblay, Canada)

Cell therapy

Other stem cells

- E.g. blood, blood vessel and adipse (fat) stem cells can become muscle cells
- Can migrate from blood into muscle
- Efficiency currently very low
- Mesangioblasts and CD133+ cells promising (more efficient)
- Trials planned for early 2011 (Italy)
- Autologous stem cells also studied (no immunity)

Gene → Protein

Dystrophin gene

Splicing

Duchenne: genetic code disrupted

Duchenne: genetic code disrupted

Becker: genetic code maintained

Becker: genetic code maintained

Exon skipping: restore genetic code

Exon 47 Exon 51 Exon 52

Exon 47 Exon 52

Annemieke Aartsma-Rus

Applicability

hotspot

Exon	All mutations	Deletions	Duplications	Small mutations
51	13.0%	19.1%	0.3%	3.0%
45	8.1%	11.8%	0.2%	2.2%
53	7.7%	11.4%	0.1%	1.5%
44	6.2%	8.85	0.4%	2.7%
46	4.3%	6.2%	0.2%	1.6%
52	4.1%	5.7%	0.5%	2.3%
50	4.0%	5.6%	0.2%	1.9%

Intramuscular trial (Prosensa)

Intramuscular trial (AVI)

- Two doses tested (0.09 and 0.9 mg)
- EDB muscle
- Exon skip in all doses
- Dystrophin restoration only for high dose

Intramuscular trials

- Exon skipping observed in all patients
- No toxic effects observed!
- Dystrophin levels very comparable
 17-35% vs 22-32%
- Number of dystrophin positive cells comparable
 64-97% vs 44-79%
- Systemic treatment needed

Systemic trials

Prosensa trial (Belgium/Sweden)

- 12 patients, 4 dose groups (0.5, 2, 4 & 6 mg/kg)
- Subcutaneous weekly injections for 4 weeks
- 6 month extension trial ongoing (6 mg/kg/week)

AVI trial

- 19 patients, 6 dose groups (0.5, 1, 2, 4, 10 & 20 mg/kg)
- Intravenous weekly injections for 12 weeks
- Extension trial planned

Systemic trial results

Prosensa trial

- Dystrophin restoration in a dose dependent way
- Homogeneous staining
- No toxic effects observed
- Extension trial ongoing

Systemic trial results

AVI trial

- Dystrophin restoration
- Response differs within dose groups
- Three patients respond very well (2, 10 & 20 mg/kg)
 Up to 50% dystrophin positive fibers highest dose!
- No toxicity observed

Planned/ongoing trials

- Exon 51 skipping
 - Non ambulant trial planned (Prosensa)
 - Dose finding trial planned (Prosensa)
 - Phase 3 trials planned (GSK/Prosensa)
- Exon 44 skipping Phase I/II started (Prosensa)
- Exon 45 skipping trial planned (Matsuo, Japan)
- Optimization other exons ongoing
- Dialogue with regulatory agencies initiated

PTC124/ataluren

PTC124/ataluren

PTC124/ataluren

Cell ignores new stop signal Complete protein is made

PTC124/Ataluren

- Tested in patient-derived cells
- Tested in mdx mouse model
- Dystrophin restoration

PTC124/Ataluren

- Tested in healthy controls: safe
- Tested in 28 patients (dose finding)
 - Safe
 - Increased dystrophin expression
- Tested in 174 patients in 48 week trial
 - Placebo, high dose and low dose
 - Safe!
 - No significant difference in primary outcome (6MWT)
 - Dystrophin levels? (analysis pending)

PTC124/Ataluren

Figure 1: Difference between the treatment groups in the average 6MWD through 48 weeks of treatment

Utrophin upregulation

Utrophin upregulation

- Utrophin resembles dystrophin
- Utrophin can take over dystrophin function
- Expressed in nerve cells, hardly in muscle
- Find ways to turn on utrophin gene in muscle cells

Screen drugs to find one that "fits" on the volume switch and switches it on

Utrophin gene volume switch

Utrophin upregulation

- Screen for drugs that can turn up utrophin volume switch
- High throughput screening in cell models (thousands!)
- Potential drugs screened further in patient-derived cell cultures and mouse models
- Candidate drug currently tested in healthy volunteers (BMN195) by Biomarine

Muscle growth factors

Muscle growth inhibitors

Muscle growth factors

Muscle growth factors

Muscle growth inhibitors

- Myostatine inhibits muscle growth
- Animals/human without myostatin: muscular!
- Inhibit myostatin increase muscle size
- Compensate loss of muscle in patients

Normal

Acceloron generated potent myostatin antibody Tested in healthy mouse

- More muscle and less fat
- Mdx mice
- More muscle and less fat
- Stronger muscle

Tested in healthy volunteers

- Well tolerated
- Increased muscle mass
- 1 kg in 2 weeks for highest dose (5% increase!)
- Multiple doses also well tolerated

Summary/Outlook

- Lack of dystrophin underlies problems in Duchenne patients
- Therapies aim to tackle one or more of these problems
- Lot is known about disease primarily due to research funded by patient advocacy group
- Due to improved care life expectancy is increased from ~16 to ~30!